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Abstract 

I n  a previous paper  (Murask in .  1973). we obta ined a bounded  particle in 'aesthetic '  field 
theory.  The  field equat ions  there are implied by a set o f  equat ions  for a sys tem of  basis  
vector  variables,  e . ,  In  this paper,  we propose  a simpler set o f  field equat ions  for e . ,  W e  
find that  a bounded  particle solut ion to the  equat ions  still appears  (as determined by axes 
runs) .  The  particle appears  basically similar to the  particle found  previously.  

1. Introduction 

In a previous paper (Muraskin, 1973),t we found that our aesthetic-type 
field theory implied the existence of a bounded particle. We also found that 
there was no sign of singularities appearing anywhere in our mapping 
program. The field also became small outside the particle. This latter 
result is not inconsistent with the natural boundary conditions Aij~ -+ 0 at 
infinity. 

In our previous work, the field equations were for the quantities A~j~. 
These A~k equations are implied by a set of equations for the quantities e~. 
In this paper we find a simpler set o fe~  equations consistent with our basic 
ideas. We then study this simpler system of e~ equations using computer 
techniques. 

2. e,, Equations 

In our previous work our equations were 

de~ = A,,ike~mdx~ (2.1) 

Aijk = e,~ e~ e,k A,~, (2.2) 

r A detailed list o f  references will be found  therein. 
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gts = e~t eosg,~ (2.3) 

A,B, = gr r 5~o + g,,~ Oa 6Bo + $~gav 5~o 

+ A ~  5~o 6~o 5~o + B~ 5~o e~,p~ (2.4) 

1 0 (2.5) 
g ~ =  0 1 

0 0 

(2.4) and (2.5) are invariant under the group 0'(3) x T. Combining (2.1) 
and (2.2) we get field equations for e,t 

0e~ t 
OXk = e~m e,m eat evk A,ar (2.6) 

The condition that e~t ---> 0 at infinity implies that e,t is not orthogonal at 
all points. That is 

e~t e~s # fits (2.7) 
e~t e~t # 5~a 

In our previous work we took e,t to be orthogonal at the origin point. 
In formulating the system of  equations above we required e,~ to be the 

basic field from which all the other fields are constructed. Thus, the change 
of  all fields would be determined from the manner that the field in question 
is related to e,t. 

3. A Simple Set o f  e, i Equations 

We recall that our coordinate system is taken to be Cartesian in space 
and we also bring in a time axis. Only linear coordinate transformations 
are allowed. We introduce a set of basis vectors e~t which are to be the basic 
field variables. The index ~ tells us which basis vector we are dealing with. 
The change of e~t between neighboring points is again a vector, so it should 
be expressed as an expansion in terms of  the basis vectors. Thus, we have 

de, t = w,~(x) eat(x ) (3.1) 

Now, w~e should depend on dxk, the displacement between the two points. 
Thus, we define A~Bk according to 

w,a = A~a k dxg (3.2) 

A~ak is a vector under linear transformations. Thus, we write 

A~ak = e~k A~a~. (3.3) 
This gives, from (3.2) 

w~a = e,k dXk A~a, (3.4) 
From (3.1) and (3.4) we get 

Oea~ 
OX~ -- A ~  e a~ e~,k (3.5) 
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As e~l are to be the sole basic fields, we require that  de~i be determined f rom 
the basic fields e~,, themselves. The  simplest  way  this can be achieved is to 
require A~B~ be constant.  As in our  previous work,  we may  then require that  
A~Bv be invariant  under  0 ' (3 )  • T. Then  (3.5) with (2.3), (2.4) and  (2.5) 
consti tute our  present  g = 0 system of  equations.  

In  our  previous work,  e~i was or thogonal  at  the origin. Thus,  (3.5) and  
(2.6) become identical at  the origin. However ,  they differ as we move  away 
f rom the origin on  account  o f  (2.7). 

The integrabili ty equations associated with (3.5) are 

A~a~ A ~,, - A~,a~ Avo~ + A~,~2 Arao - A~,~a Ava~ - 0 (3.6) 

We  do not  have an infinite number  o f  conditions to be satisfied at the origin, 
since (3.6) is satisfied at  all points  if  it is satisfied at  one point.  Thus,  unlike 
our  previous work  we do not  have an infinite number  o f  integrabili ty 
equations.  We note that  equat ion (3.6) is formal ly  the same in structure as 
the integrabili ty equations when g ~ 0. 

Using the 0 ' (3)  • Ts t ruc tu re  (2.4) and (2.5) we get that  (3.6) is satisfied if  

Oo = q~o = Aooo (3.7) 
Bo ~ = - 0 o  ~o 

We have taken in our  compute r  work  

0o = r = Aooo = Bo = - ~ o  = 1 (3.8) 

We  obtain an ex t remum in goo at  the origin if  

e~k e,o e,o g,a Aa,n (3.9) 
eok = eao e~o g~# Aaao 

with k = 1, 2, 3 and the summat ion  over 5 is over  1, 2, 3. a, a, fl are summed  
over  1, 2, 3, 0. To  get a m a x i m u m  or min imum,  the quant i ty  Atkdxtdxk 
(t = 1, 2, 3, k = 1, 2, 3) must  be positive or  negative definite. Ark is given by  

Ark = eat ezk e~o ezo[Aaza Aa,z g~a 
+ Aoz a Aa:,,~g~a + A~.a Aaz,,g~,a] (3.10) 

All the summat ions  in (3.10) are over  1, 2, 3, 0. 
A m a x i m u m  in goo was achieved by  choosing e~ at  the origin to be 

el l  = 0.7 e12 = 0.62 ela = 0.46 

e:l  = - 0 . 1 2  ez2 = -0 .08  e23 = - 0 . 1 4  

e31 = -0 .015  eaz = -0 .097  e3~ = -0.0111 

eol, eo2, eo3 were calculated f rom (3.9). 

elo = 2.4 

ezo = 0.082 

e3o = 0.092 

eoo = 2.0 

(3.11) 
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4. Discussion 

In this section we would like to make some additional comments con- 
cerning the foundation of our approach. 

A basic postulate in our program is that the fields are analytic. This 
assumption implies using the field equations that the field at one point can 
be expressed entirely in terms of the field at another point by means of a 
Taylor series expansion that converges. Once integrability has been 
established, the field is fixed at all points by the field equations in a unique 
manner once the field is given at one point. 

All the equations that we have proposed since our initial paper (Muraskin, 
1970) have the property that the change of the field between two nearby 
points can be expressed entirely in terms of the field at the original point. 
We note that not all equations that one could propose have the above 
property. For example, the wave equation 

([~ --  m 2 ) f ( x )  = 0 (4.1) 

can be expressed as (Hamilton, 1959) 

f ~] -1 (4.2) 

Thus, the field at x is given in terms of the contribution from an infinite 
number of points . f  and af/Ot are arbitrary on a hypersurface. Such arbitrari- 
ness would be a disadvantage in a basic theory. The wave equation also 
leads to discontinuities in the second derivative across a wave front. We 
may look at these discontinuities as an unacceptable property of wave 
solutions from a fundamental point of view. These discontinuities do not 
occur in a theory based on analytic fields. 

It is not yet proved that our field theory is consistent with the notion of 
analytic fields. That is, even though we can easily prove local existence of 
solutions to (3.5) [in the manner of Muraskin (1972)] we have not been 
able to prove global existence. However, the computer program has not 
given here, so far, the slightest indication that a singularity may be develop- 
ing anywhere. Thus, this suggests that global existence may well be satisfied 
also. 

In our previous work we considered the equation 

de,~ = A,,fk ec~m dxk (4.3) 
We may write 

Am~k = e,,, eat e~k A'~a~ (4.4) 
We define A~a~ by means of 

A~a~ = e~m e~rm A'~a~ (4.5) 
Thus, (4.3) becomes 

de~ = A~B~ eB~ er~ dxk (4.6) 

Thus, equation (3.5) is consistent with the type of equation given by (4.3). 
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Within our analytic field framework, the field at a point is determined 
completely from the field at a neighboring point. We thus have the 
following system of equations: 

dAi = w U dxk dBi = w~j dx~ 
dw~j = Aijk dxk dw~j = fl~jk dxk (4.7) 

dA~jk = T~jkl dxl 

What we are seeking is the simplest system of equations for which the set 
above closes, That is, we do not wish to introduce a new basic field for the 
change of each succeeding function within the hierarchy (4.7). We have 
presented several systems of equations with this closure property since our 
initial paper (Muraskin, 1970). The equations in this present paper are the 
simplest system of the type above based on e~ as the basic field�9 

5. Computer Results 

We can define Aijk by means of 

Aijk = e~i eBj e~k A~ar (5.1) 

This Auk will no longer satisfy 

DAtjk 
- OX z = Amjk Am~t + Aim~ Am j l  + Ai]~Amu (5.2) 

since (3.5) is not the same as (2.6). In our previous work, we had a problem 
in that so many components of A~jk were repeats of other components. In 
our present work we still have repeats, but not as many. 

We have plotted goo along the x axis in Fig. 1. The plot ofgoo along y and z 
has a similar shape. Even though we do not have a turnabout point, along 
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Figure  1.--goo versus  x.  The  grid used  was 0.0002. 
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each of the axes, goo is still nevertheless bounded, goo approaches the bound- 
ing value zero in all cases. In view of the absence of  a turnabout point in all 
directions we do not have a natural boundary for the particle associated 
with the maximum. In addition to the maximum ofgoo at the origin we have 
found a minimum in goo in the vicinity of  x = -2.64, y = 0.38, z = 2.20. 
Here, the value of  goo is 0.00008. This leads to the speculation that at the 

TABLE 1. goo versus x for large x 

X goo 

4.0 0.51 
7"0 0.19 

10.0 0"10 
13"0 0.061 
16"0 0"041 
19"0 0-029 
22.0 0.022 
25"0 0.017 
30"0 0"012 
50.0 0-0044 

100.0 0.0011 
150"0 0.00050 
300"0 0-00012 
500"0 0.000045 

1000.0 0.000011 
1500"0 0.000005 
1850"0 0"000003 

exact minimum goo may be zero. We have found similar behavior to what 
appears above in our previous work. Although the present equations differ 
from the previous ones away from the origin, we did not find any obvious 
significant differences when making long runs from the origin. In Table 1, 
we give goo as a function o fx  for large x. For  goo, as well as for all components 
of  e~i, we find a monotonic approaching of zero at large distances from the 
origin. Thus, the qualitative situation is unchanged from our previous work. 

We have also investigated other sets of  data. We took the following 
solution of (3.7) 

0o = r = Aooo = 0"2 
Bo = 0.4 (5.3) 
~o = -0"8 

with e,i still given by (3.11). This gave a maximum in goo at the origin. 
A further set of  data is given by 

A ~  = 5~ r + 5~,~ r - r 5B~ + Cp eo,~ (5.4) 
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wi th t  

1 0 (5.5) 
~ =  0 1 

0 0 

Such a set o f  data does not  satisfy integrability for  equation (5.2), but  it 
does for  equation (3.5). We chose ~bl = 0.2, ~bz = 0.3, qSa = 0.6, qSo = 1.0. 
We obtain a maximum for  goo with e,~ again given by (3.10). We note the 
initial data is unchanged in form under  four-dimensional  rotations. In  
bo th  sets o f  data above, we take g,a to be given by (2.5). 

In  bo th  these cases, we found the goo versus x plots to be similar to Fig. 1. 

6. Summary of  Results 

We have obtained the following results: 

(1) We get a bounded goo particle (as inferred by axes runs). 
(2) There is no sign o f  singularities appearing anywhere in our  computer  

work.  
(3) The fields approach zero far away f rom the origin in our  computer  

studies. 

F r o m  selected runs off the axes, we find no evidence contrary to a bound  
existing in all directions. 

Thus,  our  results are basically similar to those o f  our  previous paper. 
We see, therefore, that  the kind of  results we have obtained is not  unique 
to equation (5.2). 
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t 3tj =- e~ieajfi~a would not have an inverse at each point, since our computer results 
suggest e~i -+ 0 at infinity. Thus, we can not raise indices with the inverse of fi~(x) at all 
points. 


